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1 Introduction
Path integral formulation is often used in solving the SU(3) gauge theory. Given a SU(3)
gauge-invariant Lagrangian L, the partition function is[12]

Z =

∫
Dψe−iS[ψ] (1)

where the action S[ψ] =
∫
d4xL[ψ, ∂ψ]. If the Lagrangian is real, then after a Wick rotation

t→ −it, the action S is purely imaginary and the metric becomes Euclidean. We can perform
Monte-Carlo method to sample the set of configuration of field ψ and the probability density
assigned to each configuration is well-defined.

However, sign problem would emerge when we consider topological terms[7]. For example,
if we perform a chiral rotation, after a change in the path-integral method, there is a term in
the Lagrangian that looks like mψ̄eiγ5ψ, which makes the Lagrangian complex. The partition
function 1 is now an path integral with oscillating phase factor and the usual probability
interpretation doesn’t work.

Therefore, we adopt a Hamiltonian formulism to work non-pertubatively. We discretize
the space and adopt Kogut-Susskind formulation[1], where staggered fermion is used to reduce
the degeneracy. The operators corresponding to interaction term involves non-local gauge
group elements and introduce non-abelian gauge constraints. To satisfy those constraints, we
split the gauge link into two components, each involves only local gauge transformations[3].
This is called a Quantum Link Model(QLM).

In SU(2) gauge theory, the separation reduces to two separate SU(2) representation with
the same weight, which can be implemented by angular momentum representation(i.e., ∃
raising and lowering operators J± and the J3 operator)[3]. Generally, the algebra suggests
that a Schwinger Boson formulation can be adopted to satisfy the commutation relation for
any semisimple Lie group, especially SU(3).

In this way, the gauge field is generated by a set of bosonic operators[2, 4, 5], which
live in some representation of the relevant Lie group. These operators, combined with the
fermionic operators, can form Gauge-nvariant local operators which combine as the Hamilto-
nian. This process is called Loop, String, Hadron formalism(LSH)[8, 9] and it can completely
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tern non-abelian Gauge constraints to a set of abelian Gauss constrains. Relevant Quantum
computation algorithms can be designed and implemented based on these operators to cal-
culate relevant properties. Such form is studied in the case of SU(2) symmetry[8], and a pure
gauge theory has been developed[9].

In the following sections, I will try to extend the LSH formalism to the full SU(3) gauge
theroy, with the presence of both fermionic field and gauge field.

2 Preliminaries[10–12]
For a gauge field A = AaT a, where T a are the generators of the Lie algebra, define covariant
derivative, Dµψ

i = ∂µψ
i − iAaµ[T a(R)]ijψ

j.

2.1 SU(3) Lagrangian

L = −1

4
F a
µνF

µν
a + Σqψ̄

q
i (iγ

µ(Dµ)ij −m)ψqj (2)

Where each ψa is a Dirac spinor. The variation with respect to φ̄ shows that the equation of
the field is

i
dψ

dt
= Aµ(x)

dx

dt
(3)

This shows that we can view A as the connection over the principle bundle where ψ lives.
The curvature is defined as F a

µν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , where fabc are the structural

constants.
The geometrical interpretation of A field motivates us to define a parallel transport, aka

a Wilson line
U [xi, xf ;C] = Pexp(i

∫ xf

xi

A) (4)

where P is the path ordering and C is a specific path with xi initial point and xf end point.
It is nontrivial since SU(3) is non-Abelian.

2.2 Gauge transformation

For fermionic field,
ψ → Λ[R]ψ (5)

where Λ[R] ∈ SU(3) is a gauge symmetry in representation R. For simplicity, sometimes we
drop R if the representation is clear under the context.

For gauge field,
Aµ →ΛAµΛ−1 + Λ∂µ(Λ−1)

Fµν →ΛFµnuΛ
−1 (6)

Under such transformation, a covariant derivative transforms as a fermionic field,

Dµψ → ΩDµψ (7)
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and a Wilson line transforms as

U [xi, xf ;C]→ Λ(xi)U [xi, xf ;C]Λ†(xf ) (8)

The SU(3) Gauss Law reads

Σi(E
a
L(n, i) + Ea

R(n, i))|phys〉 = 0

Σi[(E
a
L(n, i) + Ea

R(n− i, i)) +
1− (−)n

2
− (ψa†n ψ

a
n − ψa†n ψan)]|phys〉 = 0

(9)

This defines the physical space, Hphys ⊂ Hgauge.

2.3 QCD Hamiltonian

We can select Weyl Gauge A0 = 0 and get the Hamiltonian as[11]

H =

∫
ddx[−iψ̄γiDiψ +mψ̄ψ + 1/2(E2 +B2)] (10)

where d is the dimension of consideration, Ba
k = εklm(∂lA

a
m − g/2fabcAblAcm).

We can quantize the Rd space and get the Kogut-Susskind Hamiltonian[1],

H = HI +HM +HE +H� (11)

with each term corresponds to a term in equation 10

HI = −tΣx,i(ψ
†
xUx,iψx+i + h.c.)

HM = mΣx(−)xψ†xψx

HE = g2
e/2Σx,iE

2
x,i

HB = g2
m/2Σx;i 6=j∈{1,2,...d}(�x,i,j) + h.c.

(12)

where the plaquettes �x,i,j = Ux,iUx+i,jU
†
x+j,iU

†
x,j with U the wilson lines.

The first term is the hopping term, which discribes the interaction of a fermionic field with
its corresponding gauge field. It can be clearly interpreted that fields at different locations
interact via the parallel transporter U.

Quantizing the space will introduce a momentum bound to the problem. There will be
a Brillouin Zone in the momentum space, where the corners should all be identified. This
will introduce redundancy in the description of the problem, known as the fermion doubling
problem. Here we introduce a staggered fermion method to reduce such redundancy by
diagonalizing the interaction term in the Hamiltonian, so each entry in the Dirac spinor is
separated from other entries and the equation is identical to all 4 entries. WLOG, we can
then consider only the 1st entry of the Dirac spinors. Mathematically we can introduce
a transformation ψ → ψT (x), where T (x) = γx11 γ

x1
2 γ

x3
3 in 3 dimensional space. This will
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diagonalize the interaction term and introduce a new (−)x := (−1)x1+x2+x3 factor in the
mass term.

In the Weyl gauge, what are left in the Hamiltonian are the colorelectric and colormag-
netic field, which is the familiar electric field and magnetic field in U(1) gauge theory. The
colorelectric term discretises intuitively, whereas the colormagnetic term is less obvious. We
aim to preserve the SU(3) gauge symmetry in the discretised formula, and the natural object
to find is the Wilson line U [xi, xf , ], which is the only "observable" gauge field operator since
all local details between two adjacent sites should be lost during the discretization. From
equation 8, the only gauge-invariant obect to consider is the Wilson loop

W [C] = trPexp(i
∮
A) (13)

Since the space is discretised, the smallest such loop is a plaquett �x,i,j. A bigger loop can be
construct by multiplying the small plaquettes together. All inner lines will be cancelled out
since U [xi, xf , C] = U [xf , xi,−C]−1 and what survives is the outer edges forming the bigger
loop.

2.4 Quantum Link Model

Since U [xi, xf ;C]→ Λ(xi)U [xi, xf ;C]Λ†(xf ), U belogs to two different local Gauge symmetry
groups. Hence we can split U = ULUR and hopefully make each half-link transform locally
under two gauge symmetries respectively, with

UL → Λ(xi)UL

UR → URΛ(xi)
(14)

We can find the generators of such transforms, EL/R, satisfying[6, 9]

[Ea
L(n, i), U(n, i)] = T aU(n, i)

[Ea
R(n, i), U(n, i)] = U(n, i)T a

(15)

such transformation indicates that E are the colour-electric field operators in the Weyl Gauge
(since Ei = Ȧi which satisfy the same commutative relations).

The Casimir constraint is
Ea
LE

a
L = Ea

RE
a
R (16)

at each link.

3 Irreducible Shwinger Boson operators in SU(3)
We can reformulate equation 15 using Schwinger Boson formulation.[2, 9]

Ea
L = a†LT

aaL − bLT ab†L
Ea
R = a†RT

aaR − bRT ab†R
(17)
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where each a, b is a triplet define at respective link at location (n,i). The commutation
relation 15 turns to

[a, a] = 0 = [b, b]

[aαl , a
†
l′β] = δαβ δll′

[blα, b
†β
l′ ] = δβαδll′

(18)

and all commutators at different link vanishes. Such process is called prepotential formula-
tion. We can see that

aα →Λα
βa

β

bα →bβΛβ
α = bβ[(Λ)†]αβ

(19)

we can thus identify a as living in representation 3 and b living in representation 3̄, the
fundamental and antifundamental representations of SU(3) respectively.

However, such representation of the gauge field generating a space Hprepotential ⊃ Hgauge,
which has additional U(1) × U(1) × Sp(2, R) × Sp(2, R) symmetry[9]. The U(1) × U(1)
symmetry requires

N(R) = M(L), N(L) = M(R) (20)

where the operators are defined in section 5.3. The additional symplectic symmetry motivates
us to define the color neutural(i.e. gauge invariant) Sp(2,R) operators as[9]

k−(l) ≡ a(l) · b(l)
k+(l) ≡ a†(l) · b†(l)

k0(l) ≡ 1

2
(a†(l) · a(l) + b†(l) · b(l) + 3)

(21)

with l ∈ {L,R}. The Hilbert spaces generated by prepotential operators can be decomposed
into a direct sums of subspaces, each with a spin associated to and is a copy of the gauge
Hilbert space. Therefore we can select a "spin neutral" subspace as our gauge space, in which
we redefine the prepotentials as[9]

A†α(l) = a†α(l)− Flk+(l)bα(l)

B†α(l) = b†α(l)− Flk+(l)aα(l)
(22)

with l ∈ {L,R}, Fl = 1
N(l)+M(l)+1

. Notice that they transform as a†α and b†α respectively.
The gauge link operator is

Uα
β = B†α(L)ηA†β(R) + Aα(L)θBβ(R) + (B(L) ∧ A†(L))αδ(A(R) ∧B†(R))β (23)
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where
η = ηLηR, θ = θLθR, δ = δLδR

ηL =
1√

B(L) ·B†(L)

θL =
1√

A†(L) · A(L)

δL =
1√

A(L) ∧B†(L) · (B(L) ∧ A†(L))

ηR =
1√

A†(R) · A(R)

θR =
1√

B(R) ·B†(R)

δR =
1√

A(R) ∧B†(R) · (B(R) ∧ A†(R))

(24)

The gauge link operator U can be split into two parts, each transforms locally with the gauge
symmetry associated to the site as promised in section 2.4. We have[9]

UL[3] =

B†1(L)ηL A1(L)θL (B(L) ∧ A†(L))1δL
B†2(L)ηL A2(L)θL (B(L) ∧ A†(L))2δL
B†3(L)ηL A3(L)θL (B(L) ∧ A†(L))3δL

→ Λ[3]UL[3]

UR[3] =

A1(R)ηR B†1(R)θR (B(R) ∧ A†(R))1δR
A2(R)ηR B†2(R)θR (B(R) ∧ A†(R))2δR
A3(R)ηR B†3(R)θR (B(R) ∧ A†(R))3δR

→ UR[3]Λ[3]†

(25)

4 Coupling with fermionic field

4.1 alternative way of writing the Schwinger boson field

For the same excitation of gauge field, there are two ways of writing the half-link operators,
each transform as representation 3 or 3̄. This can be seen as a natural isomorphism(unlike
the case in SU(2), this is complex conjugation, NOT linear transformation) between two
representations. Notice the symmetry between A and B in equation 23. Define η̄l, θ̄ = l and
δ̄l as equation 24, with all A ↔ B. We can do the same exchange of operators in equation
25 and get

UL[3̄] =

B1(L)η̄L A†1(L)θ̄L (B(L)† ∧ A(L))1δ̄L
B2(L)η̄L A†2(L)θ̄L (B(L)† ∧ A(L))2δ̄L
B3(L)η̄L A†3(L)θ̄L (B(L)† ∧ A(L))3δ̄L

→ Λ[3̄]UL[3̄]

UR[3̄] =

A†1(R)η̄R B1(R)θ̄R (B(R)† ∧ A(R))1δ̄R
A†2(R)η̄R B2(R)θ̄R (B(R)† ∧ A(R))2δ̄R
A†3(R)η̄R B3(R)θ̄R (B(R)† ∧ A(R))3δ̄R

→ UR[3̄]Λ[3̄]†

(26)
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4.2 Complete Kogut-Susskind Hamiltonian

Notation. distinguish ψa and φb. They represent quark and antiquark fields respectively,
each transformed as 3 or 3̄.

Equation 12 can be rewritten in locally gauge invariant operators in the following form

HI = −tΣx,i(ψ
†
xUL;x,i[3])(UR;x,i[3]ψx+i + φ†xUL;x,i[3̄])(UR;x,i[3̄]φx+i) + h.c.

HM = mΣx(−)x(ψ†xψx − φ†xφx
HE = g2

e/2Σx,iE
2
x,i

HB = g2
m/2Σx;i 6=j∈{1,2,...d}(�x,i,j) + h.c.

(27)

All can be formulated using the locally gauge invariant operators defined in the next
section.

5 SU(3) LSH operators

5.1 Pure Gauge Loop

Singlets made from gauge field. Invariant under SU(3). Bilinear form.

L++
ab = a†(R)αb

†(L)α

L−−ab = a(R)αb(L)α = (L++
ab )†

L++
ba = b(R)αa(L)α

L−−ba = b†(R)αa†(L)α = (L++
ba )†

L+−
b = b†(R)αb(L)α

L−+
b = b(R)αb

†(L)α = (L+−
b )†

L+−
a = a†(R)αa(L)α

L−+
a = a(R)αa†(L)α = (L+−

a )†

(28)

Notice L+−
b = −L+−

a and L++
ab = −L++

ba in SU(2), since fundamentals and antifundamentals
are linearly dependent(in fact, isomorphic) in SU(2). This is not the case in SU(3).

Adopting virtual site formulation to avoid Mandelstam constraints, the following loop
operators only appear in those sites with 3 edges.

La+b+
ij = a†(i) · b†(j)

La−b−ij = a(i) · b(j)
La+a−
ij = a†(i) · a(j)

La−a+
ij = a(i) · a†(j)(La+a−

ij )†

Lb+b−ij = b†(i) · b(j)
Lb−b+ij = b(i) · b†(j) = (Lb+b−ij )†

(29)
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where i, j ∈ {1, 2, 3...2d} denote the direction of edges. Again, there is 1 more pair of
operators because the independence of a&b.

There is also a new kind of creation/annihilation operators at virtual sites, genuine to
SU(3) in multidimensional:

A†ijk = εαβγa†α(i)a†β(j)a†γ(k)

Aijk = εαβγa
α(i)aβ(j)aγ(k)

B†ijk = εαβγb
†,α(i)b†,β(j)b†,γ(k)

B†ijk = εαβγbα(i)bβ(j)bγ(k)

(30)

5.2 String

Gauge field interacting with fermionic field. Bilinear form. Notice that more operators than
SU(2) at the presense of antiquark fields and anti-gluon fields.

Sb,3+
in = b(R)αψ

†α

Sb,3−in = b†(R)αψα = (Sb,3+
in )†

Sa,3−in = a†(R)αψ
α

Sa,3+
in = a(R)αψ†α = (Sa,3−in )†

Sb,3̄+
in = b†(R)αφ†α

Sb,3̄−in = b(R)αφ
α = (Sb,3̄+

in )†

Sa,3̄−in = a(R)αφα

Sa,3̄+
in = a†(R)αφ

†
α = (Sa,3̄−in )†

(31)

Sb,3+
out = b(L)αψ

†α

Sb,3−out = b†(L)αψα = (Sb,3+
out )†

Sa,3−out = a†(L)αψ
α

Sa,3+
out = a(L)αψ†α = (Sa,3−out )†

Sb,3̄+
out = b†(L)αφ†α

Sb,3̄−out = b(L)αφ
α = (Sb,3̄+

out )†

Sa,3̄−out = a(L)αφα

Sa,3̄+
out = a†(L)αφ

†
α = (Sa,3̄−out )†

(32)
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5.3 Number operators

Gauge flux operators
NL = a†(L) · a(L)

NR = a†(R) · a(R)

ML = b†(L) · b(L)

MR = b†(R) · b(R)

(33)

Quark number operators
Nψ = ψ†aψa

Nφ = φ†aφ
a

(34)

5.4 Hadron operators

Need to be invariant under SU(3). We can use upper and lower index to track the quark/anti-
quark operators, which live in 3 (fundamental)/3̄(antifundamental) representation respec-
tively. Gauge invariant requirements indicate that only ηab ,εabc and εabc

Mesons: bilinear form, made up of a quark and its antiquark.

H++ = − 1

2!
ψ†αφ†βη

β
α

H−− =
1

2!
ψαφ

βηαβ = (H++)†
(35)

The other type of operators are Ha− = ψαψ
†,α and Hb−, which are related to Ha+ = ψ†,αψα

and Hb+ by anticommulation relation and it only involves a constant before annihilated by
vacuum, hence can be ignored.

Baryons: not appearing in SU(2) doublets since no rank (0,3) antisymmetric tensor. Cor-
responds to 3 quarks and 3 antiquarks. This seems not showing up in the final Hamiltonian
since the degree is more than 2.

H3+ =
1

3!
ψ†αψ†βψ†γεαβγ

H3− =
1

3!
ψαψβψγε

αβγ

H 3̄+ =
1

3!
φ†αφ

†
βφ
†
γε
αβγ

H 3̄− =
1

3!
φαφβφγεαβγ

(36)

6 Further Work
Commutation relation of the operators can be calculated and relevant quantum simulation
algorithms can be developed based on the new operators. The advantage of this formulation
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is that gauge redundancy is turned into Abelian Gauss laws, which is more computationally
efficient.

In n ≥ 2 dimensions, Mandelstam constraints need to be satisfied[8, 9]. This can poten-
tially be done using the virtual gluon site technique[8], so that each fermion site only has two
edges and each virtual site is connected to 1)a fermionic field and two virtual sites or 2)three
virtual sites. In this way, the Hamiltonian involving fermionic fields are the same as that in
1D case.
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